Genetic Diversity, Population Structure and Linkage Disequilibrium in Elite Chinese Winter Wheat Investigated with SSR Markers
نویسندگان
چکیده
To ascertain genetic diversity, population structure and linkage disequilibrium (LD) among a representative collection of Chinese winter wheat cultivars and lines, 90 winter wheat accessions were analyzed with 269 SSR markers distributed throughout the wheat genome. A total of 1,358 alleles were detected, with 2 to 10 alleles per locus and a mean genetic richness of 5.05. The average genetic diversity index was 0.60, with values ranging from 0.05 to 0.86. Of the three genomes of wheat, ANOVA revealed that the B genome had the highest genetic diversity (0.63) and the D genome the lowest (0.56); significant differences were observed between these two genomes (P<0.01). The 90 Chinese winter wheat accessions could be divided into three subgroups based on STRUCTURE, UPGMA cluster and principal coordinate analyses. The population structure derived from STRUCTURE clustering was positively correlated to some extent with geographic eco-type. LD analysis revealed that there was a shorter LD decay distance in Chinese winter wheat compared with other wheat germplasm collections. The maximum LD decay distance, estimated by curvilinear regression, was 17.4 cM (r(2)>0.1), with a whole genome LD decay distance of approximately 2.2 cM (r(2)>0.1, P<0.001). Evidence from genetic diversity analyses suggest that wheat germplasm from other countries should be introduced into Chinese winter wheat and distant hybridization should be adopted to create new wheat germplasm with increased genetic diversity. The results of this study should provide valuable information for future association mapping using this Chinese winter wheat collection.
منابع مشابه
Genetic Diversity, Population Structure, and Linkage Disequilibrium in U.S. Elite Winter Wheat
Information on genetic diversity and population structure of elite wheat (Triticum aestivum L.) breeding lines promotes effective use of genetic resources. We analyzed 205 elite wheat breeding lines from major winter wheat breeding programs in the USA using 245 markers across the wheat genomes. This collection showed a high level of genetic diversity as refl ected by allele number per locus (7....
متن کاملPopulation genetic structure of Oryza sativa in East and Southeast Asia and the discovery of elite alleles for grain traits
We investigated the nuclear simple sequence repeat (SSR) genotypes of 532 rice (Oryza sativa L.) accessions collected from East and Southeast Asia and detected abundant genetic diversity within the population. We identified 6 subpopulations and found a tendency towards directional evolution in O. sativa from low to high latitudes, with levels of linkage disequilibrium (LD) in the 6 subpopulatio...
متن کاملGenetic population structure and differentiation of Western Iranian Oxynoemacheilus argyrogramma (Heckel, 1847) using SSR markers
This study was carried out to investigate the genetic diversity and population structure of 90 specimens of Oxynoemacheilus argyrogramma collected from Sepidbarg, Gamasiab and Ghaleji rivers, in the west of Iran. Analyses using three microsatellite loci indicated that the average number of alleles in the population was 12, which was well above the reported values for freshwater fishes. The expe...
متن کاملGenetic Diversity, Population Structure, and Linkage Disequilibrium of a Core Collection of Ziziphus jujuba Assessed with Genome-wide SNPs Developed by Genotyping-by-sequencing and SSR Markers
Chinese jujube (Ziziphus jujuba Mill) is an economically important fruit species native to China with high nutritious and medicinal value. Genotyping-by-sequencing was used to detect and genotype single nucleotide polymorphisms (SNPs) in a core collection of 150 Chinese jujube accessions and further to characterize their genetic diversity, population structure, and linkage disequilibrium (LD). ...
متن کاملGenome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection
To satisfy future demands, the increase of wheat (Triticum aestivum L.) yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE), are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypi...
متن کامل